
A Universal NoSQL Engine, Using a Tried and Tested Technology

© 2010, Rob Tweed & George James. Creative Commons Attribution CC-BY 3.0

1

A Universal NoSQL Engine, Using a Tried and Tested Technology

Rob Tweed (rtweed@mgateway.com web: http://www.mgateway.com))

George James (GeorgeJ@georgejames.com web: http://www.georgejames.com)

Introduction

You wouldn't expect a programming language from the 1960s to have anything new

to teach us, especially one that diverged from the mainstream around the time that

Dartmouth BASIC became popular. Even more especially a programming language

called MUMPS.

However, surprisingly there is one aspect of this archaic language that is still ahead of

it's time. MUMPS has a pearl in its oyster called Global Persistent Variables. These

are an abstraction of the B-tree structures that are normally used by MUMPS to store

large volumes of data. Global Persistent Variables (usually simply referred to as

"Globals") are an expressive and highly efficient way of modelling all of the common

use cases that are targeted these days by NoSQL databases.

This paper explains how these Globals can be used to model and store data from each

of the distinct types of NoSQL databases: Key/value store, Tabular/Column store,

Document store and Graph database, and how, by using the modern, tried and tested

MUMPS implementations, you have the best of all worlds: NoSQL capabilities

combined with the reliability and maturity needed for business-critical applications.

Note: Globals are not to be confused with the more commonly used term that refers to globally scoped

variables. MUMPS Globals are a data storage structure.

For follow-up articles written since this paper was first published, see “The EWD Files”:

http://robtweed.wordpress.com

A Brief Introduction to NoSQL

The term NoSQL has been around for just a few years and was invented to provide a

descriptor for a variety of database technologies that emerged to cater for what is

known as "Web-scale" or "Internet-scale" demands.

Put simply, there are three aspects to web-scale:

- big data: the biggest of the web applications out there (eg Twitter, Facebook,

Google etc) are handling quantities of data that are orders of magnitude greater

than anything previously considered for database management

- huge numbers of users: numbered in the millions, accessing systems

concurrently and constantly

- complex data: typically these applications aren’t handling the simple tabular

data that one finds in many commercial and business applications.

A Universal NoSQL Engine, Using a Tried and Tested Technology

© 2010, Rob Tweed & George James. Creative Commons Attribution CC-BY 3.0

2

The relational database technologies that have dominated the IT industry since the

1980s began to show their weaknesses in these three areas when pushed to Web-scale,

so a growing number of people began looking for alternatives. And so the NoSQL

databases began to emerge. Although a variety of models have evolved, they all tend

to follow similar patterns:

- they handle the huge quantities of data by breaking it up across servers, a

process known as sharding

- they handle the huge numbers of users by spreading the load across servers: ie

by using parallel processing

- they use simpler, more flexible schema-free database designs

Without exception, the most successful and well-known of the NoSQL databases have

been developed from scratch, all within just the last few years. Strangely, it seems

that nobody looked around to see whether there were any existing, successfully-

implemented database technologies that could have provided a sound foundation for

meeting Web-scale demands. Had they done so, they might have discovered two

products, GT.M (http://fisglobal.com/Products/TechnologyPlatforms/GTM/index.htm) and Caché

(http://www.intersystems.com) whose persistent data storage is based on Globals. Both

products are mature, high-performance products, and highly regarded within their

respective user communities. The Global storage engines of both products have

bindings from languages and frameworks including Python, Java, .Net and Node.js,

making them ideal candidates for NoSQL solutions.

A Quick Overview of Globals

Globals are:

- schema-free

- hierarchically structured

- sparse

- dynamic

Think of a persistent associative array and you’re on the right kind of track. Some

examples of Globals would be:

myTable("101-22-2238","Chicago",2)="Some information"
account("New York", "026002561", 35120218433001)=123456.45

Each Global has a name (cf array name). There then follows a number of subscripts

whose values can be numeric or text strings. You can have any number of subscripts.

Each Global "node" (a node is defined by a Global name and a specific set of

subscripts) stores a data value which is a text string (empty strings are allowed).

You can create or destroy global nodes whenever you like. They are entirely dynamic

and require no pre-declaration or schema.

A Universal NoSQL Engine, Using a Tried and Tested Technology

© 2010, Rob Tweed & George James. Creative Commons Attribution CC-BY 3.0

3

It is up to you, the developer, to design the higher-level abstraction and meaning of a

database that is physically stored as a set of Globals. Globals provide no built-in

indexing, so to provide the performance needed for searching and querying your data,

you must create and maintain additional Global nodes that represent indices.

Globals turn out to be extremely versatile, and can be very easily used to model all

four types of NoSQL database with comparable levels of performance:

- key/value stores (eg Redis, memcached)

- tabular, column-orientated databases (eg BigTable, Cassandra, SimpleDB)

- document databases (eg CouchDB, MongoDB)

- graph databases (eg Neo4j)

We’ll see later some detailed examples of how this can be done.

Original Design Goals of Global Storage

Globals were originally designed in 1966 to support the management of large volumes

of complex and loosely-structured medical and clinical data, and were specifically

engineered to be efficient enough to support what was then considered unfeasibly

large numbers of concurrent interactive users on the severely limited resources

available on PDP mini-computers. Though hardly web-scale, nevertheless Globals

were achieving what no other database technologies could achieve at that time, and

that tradition has continued to this day: supporting extremely large numbers of users,

managing huge volumes of complex data, yet delivering very high performance, on

low-cost commodity hardware (eg see

http://www.redhat.com/pdf/Profile_Benchmark_Results_11_15_2007.pdf and

http://www.intersystems.com/cache/whitepapers/Cache_benchmark.html).

In-memory Performance, On-disk Integrity

One of the key reasons for this high performance is the sophisticated caching

mechanisms that have been refined and optimised over the years to ensure that, for

most of the time, the Global nodes to which you require access are already in

memory. Most NoSQL databases still have an immature relationship between in-

memory activity (for speed) and on-disk activity (for persistence and integrity) and

are open to risk if a node or shard server goes down (eg

http://highscalability.com/blog/2010/10/15/troubles-with-sharding-what-can-we-

learn-from-the-foursquare.html). By comparison, GT.M and Caché have been

hardened against such risks. The result is tried and tested in-memory-like

performance with on-disk-like integrity, the direct result of decades of real-world

experience in demanding environments such as healthcare, finance and banking,

where performance, integrity and reliable non-stop operation are essential

Can you spot the similarity with the goals of NoSQL databases?

A Universal NoSQL Engine, Using a Tried and Tested Technology

© 2010, Rob Tweed & George James. Creative Commons Attribution CC-BY 3.0

4

Ticking the NoSQL Boxes

Some weeks ago, TechRepublic published a blog named "10 things you should know

about NoSQL databases" (http://blogs.techrepublic.com.com/10things/?p=1772).

This listed 5 advantages of and 5 challenges for NoSQL databases. In fact, if you

judge GT.M and Caché against these 10 criteria, they score a tick against all 5

advantages, but, more interestingly, address 4 out of 5 of the challenges, something no

other NoSQL database can boast. Let’s quickly look at these criteria:

5 Advantages:

- Elastic Scaling

- Big Data

- Goodbye DBAs

- Economics

- Flexible Data Models

5 Challenges:

- Maturity

- Support

- Analytics and Business Intelligence

- Administration

- Expertise

Taking each advantage in turn:

- Elastic scaling: Both GT.M and Caché have, for many years, supported

scaling out across multiple servers, and can do so across low-cost commodity

hardware. In the case of Caché, their ECP networking technology allows

seamless logical views of Globals, where that global can be physically

distributed across multiple servers.

- Big Data: GT.M and Caché systems are designed to support and manage huge

volumes of data, way beyond the limits of relational databases, whilst still

delivering extremely high performance.

- Goodbye DBAs: interestingly, InterSystems, the vendor of Caché, has used

this feature in its marketing for many years. There are stories of Global-based

systems that have been running unattended for decades.

- Economics: Both GT.M and Caché will happily run on low-cost, commodity

hardware and extract maximum levels of performance from them. Partners

Healthcare in Massachusetts supported tens of thousands of interactive users

throughout the 1980s and 1990s on a networked cluster of hundreds of

commodity MSDOS-based PCs running a pre-cursor to Caché.

- Flexible Data Models: this is the very essence of Global storage as this paper

will later explore.

A Universal NoSQL Engine, Using a Tried and Tested Technology

© 2010, Rob Tweed & George James. Creative Commons Attribution CC-BY 3.0

5

As to the challenges:

- Maturity: Unlike the new NoSQL databases, GT.M and Caché have a long

pedigree and outstanding track record, supporting large complex databases in

demanding, real-world business environments. They are robust, extremely

reliable and stable technologies that can be confidently used in business-

critical situations

- Support: GT.M is heavily used in some of the world’s largest core banking

systems, whilst Caché dominates the healthcare industry. One of the key

reasons that they are entrusted to such business- and safety-critical roles has

been the quality of the commercial support that is provided by the respective

vendors.

- Analytics and Business Intelligence: interestingly, InterSystems are now

heavily marketing a product called DeepSee, which is designed for exactly this

purpose, and is layered on top of their core Global-based database engine.

Both GT.M and Caché support connectivity to SQL-based business analytics

tools: for many years they have supported both SQL and non-SQL database

access

- Administration: Both GT.M and Caché are straightforward to install and

maintain, and are often used in situations where there are few, if any, skilled

IT resources available.

- Expertise: This is the one area where GT.M and Caché admittedly fall short.

Whilst the user-base for Caché, in particular, has been steadily growing, the

number of skilled professionals who have experience in GT.M and Caché is

very small compared with the availability of RDBMS skills

Both GT.M and Caché are, in summary, ideal candidates for businesses that require a

NoSQL technology but require something that is mature, robust and reliable.

Though both products are commercially licensed and available across a wide variety

of hardware and operating systems, GT.M is particularly interesting because it is

available as a Free Open Source product when run under GNU/Linux on x86

hardware.

A Universal NoSQL Engine, Using a Tried and Tested Technology

© 2010, Rob Tweed & George James. Creative Commons Attribution CC-BY 3.0

6

Modelling the 4 NoSQL Database Types Using Globals

Before we describe how each NoSQL database type can be modelled in Globals, let’s

first examine the structure of Globals in a little more detail and define some of the

terminology that we’ll use later.

When storing data in Globals, there are three components that you use to represent a

unit of storage:

- Global name.

- subscripts (zero, one or more). These may be text strings or numeric values

- value (the value to be stored). This may be a text string or a numeric value

They are commonly expressed as [n]-ary relational variables in the following form:

 globalName(subscript1,subscript2,..subscriptn)=value

This combination of name, subscripts and value is known as a Global Node and is the

unit of storage. A Global is a collection of Global Nodes and a database is a

collection of Globals.

An important aspect of Globals is that a single named Global can contain nodes with

different numbers of subscripts, eg:

 myGlobal("a")=123

 myGlobal("b","c1")="foo"

 myGlobal("b","c2")="foo2"

 myGlobal("d","e1","f1")="bar1"

 myGlobal("d","e1","f2")="bar2"

 myGlobal("d","e2","f1")="bar1"

 myGlobal("d","e2","f2")="bar2"

 myGlobal("d","e2","f3")="bar3"

The net result is that a single named Global represents a sparse hierarchical tree of

nodes. For example, the Global above effectively represents the following

hierarchical tree:

A Universal NoSQL Engine, Using a Tried and Tested Technology

© 2010, Rob Tweed & George James. Creative Commons Attribution CC-BY 3.0

7

You can create as many different named Globals as you like. So in other words, a

database in GT.M or Caché will consist of one or more named Globals, each with its

hierarchy of nodes.

There is no explicit relationship between the named Globals in such a database, but

there may be implicit relationships that are determined and managed at the application

level. There is no explicit schema associated with Globals, and the way in which data

is represented within Global nodes is implicitly defined at the application level.

Global nodes are created by using the native command set. All language and

framework bindings expose this command. In this paper we’ll denote the invocation

of the set command by whatever binding you use as:

 Set: myGlobal("b","c3")="Rob"

So, for example, if you were using the node-mdbm Node.js client

(http://github.com/robtweed/node-mdbm), you would create this Global Node as

follows:

mdbm.set(‘myGlobal’, [‘b’,’c3’], ‘Rob’, function(error, results) {….});

We’ll represent the other relevant native commands similarly.

Invoking this command would insert this node to our hierarchy and the tree would

now look like the following:

A Universal NoSQL Engine, Using a Tried and Tested Technology

© 2010, Rob Tweed & George James. Creative Commons Attribution CC-BY 3.0

8

So, with this basic information in mind, now let’s look at how you can use Globals for

representing the data structures typically found in NoSQL databases.

A Universal NoSQL Engine, Using a Tried and Tested Technology

© 2010, Rob Tweed & George James. Creative Commons Attribution CC-BY 3.0

9

1) Key/Value Storage

Implementing a key/value store using Globals is simple. You could create a very

basic one using the following Global structure:

 keyValueStore(key)=value

 eg:

 telephone("211-555-9012")="James, George"

telephone("617-555-1414")="Tweed, Rob"

Viewed as a hierarchical tree:

That’s all there is to implementing simple key/values stores, but with Globals you can

go further by storing multiple attributes against each key. For example:

 telephone(phoneNumber,"name")=value

 telephone(phoneNumber,"address")=value

 eg:

 telephone("211-555-9012","name")="James, George"

 telephone("211-555-9012","address")="5308, 12th Avenue, Brooklyn"

 telephone("617-555-1414","name")="Tweed, Rob"

 telephone("617-555-1414","address")="112 Beacon Street, Boston"

ie we’ve now created a hierarchical tree that looks like this:

For example, to create the first record in this redesigned key/value store using the

node-mdbm Node.js client,:

mdbm.set(‘telephone’, [‘ 617-555-1414’,’name’], ‘Tweed, Rob’, function(error, results) {….});

A Universal NoSQL Engine, Using a Tried and Tested Technology

© 2010, Rob Tweed & George James. Creative Commons Attribution CC-BY 3.0

10

NoSQL databases typically don’t provide automatic methods for indexing data.

Neither do Globals. If you want to access data via an alternative key then you simply

create a second Global with the alternate item as a key.

For example if you wanted to access the data using name as a key you’d need to add

an index Global and update it at the same time as the telephone Global. Designing and

adding indices is entirely your responsibility, but is very simple.

Here we add a simple name index by creating the following global nodes every time

we add entries to the telephone Global:

 nameIndex(name,phoneNumber)=""

 eg:

 nameIndex ("James, George", "211-555-9012")=""

 nameIndex ("Tweed, Rob", "617-555-1414")=""

No data value is necessary for this index, so we just use an empty string.

Viewing the main data Global and our index Global together diagrammatically (the

dotted lines show the implied relationships between the index and telephone data

nodes):

This index global provides us with a method of accessing our telephone data by name,

while the main global allows us to access the data by telephone number.

A very important and powerful feature is that Global Nodes are automatically stored

as a sorted set within a Global (as shown in the diagram above). An iterator method is

provided that enables the content of every Global to be accessed sequentially. If we

wanted to produce a telephone directory from this data we can iterate through the

nameIndex Global and then use a get method to access the address data from the

telephone Global.

A Universal NoSQL Engine, Using a Tried and Tested Technology

© 2010, Rob Tweed & George James. Creative Commons Attribution CC-BY 3.0

11

Natively this iterator is known as the order function, and this is exposed in a variety

of ways through the various language and framework bindings. For example the

node-mdbm Node.js client for GT.M provides three commands that are based on

order:

 getNextSubscript

 getPreviousSubscript

 getAllSubscripts

eg:

mdbm.getNextSubscript(‘nameIndex’, [‘James, George’], function(error, results) {});

would return the next Global Node subscript following ‘James, George’ in this

Global ie:

 {subscriptValue: ’Tweed, Rob’}

GT.M and Caché are very highly optimised for traversing subscripts in this way, so if

you design your indices well, searching for data in Globals is exceptionally fast.

There are all kinds of ways in which Globals can be designed for use as simple

key/value stores. For example, you could redesign our example store using just one

single global for both data and indices by adding a further first subscript, eg:

 telephone("data",phoneNumber,"address")=address

 telephone("data",phoneNumber,"name")=name

 telephone("nameIndex",name,phoneNumber)=""

Since the physical implementation of Globals is abstracted away, you can design the

structure of your Globals to precisely match your processing needs. However, if your

key/value stores are going to grow to enormous sizes, then you’ll need to consider if

and how a particular structure will aid or hinder the management of the Global(s)

concerned (eg in terms of backup and recovery, maximum database size limits,

distribution across multiple shards etc). This kind of consideration can affect whether

you store data in one Global or spread it across several Globals.

Other Key/Value Types

If you look at a NoSQL key/value store such as Redis, you’ll find that it provides a

variety of other types. It turns out that every one of these types can also be very

simply implemented using Globals.

Lists

Redis List types are linked lists. You can push values onto a list and pop values off a

list, return a range of values, etc.

A Universal NoSQL Engine, Using a Tried and Tested Technology

© 2010, Rob Tweed & George James. Creative Commons Attribution CC-BY 3.0

12

To model such a structure using Globals is pretty straightforward. For example you

could use a structure such as the following:

 list(listName,"firstNode")=nodeNo

 list(listName,"lastNode")=nodeNo

 list(listName,"node",nodeNo,"value")=value

 list(listName,"node",nodeNo,"nextNode")=nextNodeNo

 list(listName,"node",nodeNo,"previousNode")=prevNodeNo

 eg a linked list named myList that contains the sequence of values:

o Rob

o George

o John

could be represented as:

 list("myList","firstNode")=5

 list("myList","lastNode")=2

 list("myList","nodeCounter")=5

 list("myList","node",2,"previousNode")=4

 list("myList","node",2,"value")="John"

 list("myList","node",4,"nextNode")=2

 list("myList","node",4,"previousNode")=5

 list("myList","node",4,"value")="George"

 list("myList","node",5,"nextNode")=4

 list("myList","node",5,"value")="Rob"

or diagrammatically:

A Universal NoSQL Engine, Using a Tried and Tested Technology

© 2010, Rob Tweed & George James. Creative Commons Attribution CC-BY 3.0

13

What you see here is the sparse structure of Globals. The node numbers are just

sequential integer values. Node 5 is currently the first record in the list, so it has an

attribute that indicates the next node, but it doesn’t have an attribute to indicate a

previous node as there isn’t one. The middle node (#4) has attributes for both next

and previous nodes.

Each operation that modifies the list, eg pop, push, trim etc, would need to modify a

set of nodes within this structure, eg:

- Resetting the first or last node pointer

- Adding or deleting a new node value

- Resetting the relevant next and previous node pointers to add a new node into

the list, or to remove a node from the list

So, for example, pushing a new name, "Chris", onto the top of the list would change

the list Global as follows:

 list("myList","firstNode")=6

 list("myList","lastNode")=2

 list("myList","nodeCounter")=6

 list("myList","node",2,"previousNode")=4

 list("myList","node",2,"value")="John"

 list("myList","node",4,"nextNode")=2

 list("myList","node",4,"previousNode")=5

 list("myList","node",4,"value")="George"

list("myList","node",5,"nextNode")=4

 list("myList","node",5,"previousNode")=6

 list("myList","node",5,"value")="Rob"

 list("myList","node",6,"nextNode")=5

 list("myList","node",6,"value")="Chris"

ie diagrammatically (changes to previous hierarchy are highlighted):

A Universal NoSQL Engine, Using a Tried and Tested Technology

© 2010, Rob Tweed & George James. Creative Commons Attribution CC-BY 3.0

14

Traversing this list would involve starting at the first node and recursively following

the nextNode records until no more are found, ie:

Returning a count of the number of records in the list could be done by traversal of

the list, or, for maximum performance, it could be stored as a separate Global node

and updated whenever the list is modified, eg:

 list("myList","count")=noOfNodes

A Universal NoSQL Engine, Using a Tried and Tested Technology

© 2010, Rob Tweed & George James. Creative Commons Attribution CC-BY 3.0

15

Clearly we’d need to implement these operations as methods that manipulate the

Global nodes in this model appropriately, but this would be a very simple task.

Sets

Redis Sets are unordered collections of strings. We can easily model something with

the same behaviour using Globals:

 set(setName,elementValue)=""

In fact, you’ll notice that this is identical to how we defined an index earlier on. So

we can add an element to a set:

 Set: set("mySet","Rob")=""

We can remove an element from a set:

 Kill: set("mySet","Rob")

To determine if an element exists or not in a set, we make use of the native data

command. This will return 1 if the element exists and 0 if it doesn’t:

 Data: set("mySet","Rob") � 1

 Data: set("mySet","Robxxx") � 0

For example, if you use the node-mdbm Node.js client, you can use the get command

which will return the data value as the property dataStatus:

mdbm.get(‘set’, [‘mySet’,’Rob’], function(error, results) {});

 results.dataStatus will be 1

We can use the natural ordering of Global Nodes to list the members of a set in

alphanumeric sequence. For example, if you were using node-mdbm you could use:

mdbm.getAllSubscripts(‘set’, [‘mySet’], function(error, results) {});

and you’d get back an array of names in alphabetic order, eg

 ["Alan","Brian","Charles","David","Edward"]

So, by using Globals, there really isn’t any substantial difference between Redis’s sets

and zsets when modelled using Globals.

A Universal NoSQL Engine, Using a Tried and Tested Technology

© 2010, Rob Tweed & George James. Creative Commons Attribution CC-BY 3.0

16

Hashes

By now you can probably see that hashes can be implemented in exactly the same

way as Sets. In fact, Globals are essentially persistence hash tables anyway.

 hash(hashName,value)=""

A Universal NoSQL Engine, Using a Tried and Tested Technology

© 2010, Rob Tweed & George James. Creative Commons Attribution CC-BY 3.0

17

2) Tabular (or Columnar) Storage

Table-based or Column-based NoSQL databases such as BigTable, Cassandra and

Amazon SimpleDB allow data to be stored as sparse tables, meaning that each row in

a table can have a value in some, but not necessarily all, columns. SimpleDB goes

further and allows a cell in a column to contain more than one value.

Once again, it turns out that Globals can be used to model such a data store. For

example, the following structure would provide the basic features of such a store:

 columnStore(columnName,rowId)=value

 eg:

 user("dateOfBirth",3)="1987-01-23"

 user("email",1)="rob@foo.com"

 user("email",2)="george@foo.com"

 user("name",1)="Rob"

 user("name",2)="George"

 user("name",3)="John"

 user("state",1)="MA"

 user("state",2)="NY"

 user("telephone",2)="211-555-4121"

Or diagrammatically:

Once again, the sparse nature of Globals comes to the fore. The Global above

represents the following table:

A Universal NoSQL Engine, Using a Tried and Tested Technology

© 2010, Rob Tweed & George James. Creative Commons Attribution CC-BY 3.0

18

 name telephone email dateOfBirth state

1 Rob rob@foo.com MA

2 George 211-555-4121 george@foo.com NY

3 John 1987-01-23

We could, of course, add indices to this model, eg by row and by cell value, that

would be maintained in parallel with the main column store global, eg:

 userIndex("byRow",rowId,columnName)=""

 userIndex("byValue",value,columnName,rowId)=""

A Universal NoSQL Engine, Using a Tried and Tested Technology

© 2010, Rob Tweed & George James. Creative Commons Attribution CC-BY 3.0

19

3) "Document" Storage

Document-oriented NoSQL databases such as CouchDB and MongoDB store

collections of key/value pairs and recursively collections of collections. Typically,

JSON, or JSON-like structures, are used to represent these "documents".

Mapping a JSON document or object to a Global is very straightforward: simply

represent names as subscripts and values as the values held at that subscript. For

arrays, use a numeric subscript to represent the array position. For example, consider

the JSON document:

 {key:"value"}

This can be modelled as:

 document("key")="value"

A more complex document:

 {this:{looks:{very:"cool"}}}

could be represented as:

 document("this","looks","very")="cool"

How about the array:

 ["this","is","cool"]

This would be mapped to:

 document(1)="this"

 document(2)="is"

 document(3)="cool"

Put together a more complex JSON document:

{'name':’Rob’,

 'age':26,

 'knows':[

 'George',

 'John',

 'Chris'],

 'medications':[

 {'drug':'Zolmitripan',’dose':'5mg'},

 {'drug':'Paracetamol','dose':'500mg'}],

 'contact':{

 'eMail':'rob@foo.com',

 'address':{'street':’112 Beacon Street’,

 'city':’Boston’},

 'telephone':'617-555-1212',

 'cell':'617-555-1761'},

 'sex':'Male'

}

A Universal NoSQL Engine, Using a Tried and Tested Technology

© 2010, Rob Tweed & George James. Creative Commons Attribution CC-BY 3.0

20

And this would map to:

person("age")=26

person("contact","address","city")="Boston"

person("contact","address","street")="112 Beacon Street"

person("contact","cell")="617-555-1761"

person("contact","eMail")="rob@foo.com"

person("contact","telephone")="617-555-1212"

person("knows",1)="George"

person("knows",2)="John"

person("knows",3)="Chris"

person("medications",1,"drug")="Zolmitripan"

person("medications",1,"dose")="5mg"

person("medications",2,"drug")="Paracetamol"

person("medications",2,"dose")="500mg"

person("name")="Rob"

person("sex")="Male"

Or diagrammatically:

If you look at the node-mdbm Node.js client, you’ll find that this is exactly what its

setJSON command will do automatically for you. In fact you can also specify initial

subscripts to allow multiple JSON documents to be stored in a single global. eg:

documentStore("Rob","name")="Rob"

documentStore("Rob","knows",1)="George"

documentStore("Rob","knows",2)="John"

documentStore("Rob","knows",3)="Chris"

A Universal NoSQL Engine, Using a Tried and Tested Technology

© 2010, Rob Tweed & George James. Creative Commons Attribution CC-BY 3.0

21

In this case, executing the node-mdbm getJSON command:

mdbm.getJSON(‘documentStore’, [‘Rob’], function(error, results) {});

would return just Rob’s document:

 {name:’Rob’,knows:[’George’,’John’,’Chris’]}

A Universal NoSQL Engine, Using a Tried and Tested Technology

© 2010, Rob Tweed & George James. Creative Commons Attribution CC-BY 3.0

22

4) Graph Databases

NoSQL graph databases such as Neo4j are used to represent complex networks of

relationships in terms of nodes and relationships between nodes (aka "edges"), with

key/value pairs attached to both nodes and relationships.

The classic use for graph databases is to represent social networks. Take the

following example:

This is represented using Globals as:

person(personId,"knows",personId)=""

person(personId,"knows",personId,key)=value

person(personId,"name")=name

The age of the "knows" relationship would probably be derived from a timestamp key

that is created when the relationship is first saved.

 eg:

 person(1,"knows",2)=""

 person(1,"knows",2,"disclosure")="public"

 person(1,"knows",2,"timestamp")="2008-08-16T12:23:01Z"

 person(1,"knows",7)=""

 person(1,"name")="Rob"

 person(2,"name")="John"

 person(7,"knows",2)=""

 person(7,"knows",2,"disclosure")="public"

 person(7,"knows",2,"timestamp")="2009-12-16T10:06:44Z"

 person(7,"name")="George"

A Universal NoSQL Engine, Using a Tried and Tested Technology

© 2010, Rob Tweed & George James. Creative Commons Attribution CC-BY 3.0

23

or diagrammatically (the red dotted lines show the implied relationships in this

model):

In fact, for a generic graph database, the model would be further abstracted to

represent nodes and vertices, for example something like:

node(nodeType,nodeId)=""

node(nodeType,nodeId,attribute)=attributeValue

edge(edgeType,fromNodeId,toNodeId)=""

edge(edgeType,fromNodeId,toNodeId,attribute)=attributeValue

edgeReverse(edgeType,toNodeId,fromNodeId)=""

So you can see that the flexibility of Globals and their sparse nature lends themselves

very naturally to defining complex graph databases.

A Universal NoSQL Engine, Using a Tried and Tested Technology

© 2010, Rob Tweed & George James. Creative Commons Attribution CC-BY 3.0

24

5) Other Database Models

Globals aren’t just restricted to the NoSQL models. They can also be used to model

further database types:

- XML DOM/ Native XML Database. If you look at the EWD product

(http://www.mgateway.com/ewd.html), you’ll find that at its core is an

implementation of the XML DOM, modelled into a Global. It is essentially a

Graph structure that represents the nodes (and their associated type) and the

relationships between them (eg firstChild, lastChild, nextSibling, parent etc).

In essence, EWD allows GT.M and Caché system to behave as a Native XML

Database

- Relational tables. Both GT.M and Caché model relational tables onto

Globals (in the case of GT.M they have an add-on product known as PIP,

while Caché natively supports relational tables). In both cases it is then

possible to use SQL-based queries, both natively within the products and via

industry-standard third party tools.

- Persistent Object Storage. Caché goes still further and models Objects onto

the underlying Global storage, and provides a direct mapping between those

objects and relational tables. You can probably now envisage how this might

be achieved.

The really interesting thing about both GT.M and Caché is that, unlike the commonly-

known NoSQL databases, they aren’t shoe-horned into one particular category, and

can have multiple, simultaneous characteristics. So a GT.M or Caché system could

support any or all of the database types described above, simultaneously if required.

So it’s like having Redis, CouchDB, SimpleDB, Neo4j, mySQL and a Native XML

Database all running in the same database, all at the same time!

A Universal NoSQL Engine, Using a Tried and Tested Technology

© 2010, Rob Tweed & George James. Creative Commons Attribution CC-BY 3.0

25

Conclusion

There’s more to Globals than just the description we’ve given. However, hopefully

this summary overview has demonstrated that they are a nice means of abstraction

that is flexible and makes modelling many different use cases very easy. The secret

sauce, of course, is their implementation. If done correctly, there are smart design

choices that really make for astounding performance. We’ll describe more about that

in a future article.

Since this paper was published, Rob has written extensively around the topics covered above. See his

blog: “The EWD Files”: http://robtweed.wordpress.com

